Introduction to Raytracing

1 Overview

Raytracers operate by emitting a finite set of light rays from the camera through a pixel grid. Each ray
is emminated from the camera origin through a pixel center, checked for contact against any geometry in
the scene, a lighting calculation is performed, and the pixel the ray passes through is given the color output
of some lighting calculation. This process is repeated for every pixel in the grid. Because the raytracer
simulates the path of light, interesting effects such as refraction and scattering are possible to do easily and
accurately. The downside of raytracing is that it is currently not hardware accelerated, and must be done
slowly in software.

2 Emitting Rays

Before we can begin emitting rays, we first need to establish the location of the camera origin, the distance
of the pixel grid from the camera origin, and the dimensions of the grid. Let s denote the position of the
camera origin, which we’ll assume to be the zero vector. We’ll also assume that the pixel grid is the same
dimensions of the render window, w x h (w = 640, h = 480 by default), aligned with the X-Y axes, and z
units down the negative-Z axis. The coordinates of integer-valued grid cell center (i, j), where 0 < i < w
and 0 < j < h, is then, (i —w/2+0.5,5 — h/2 + 0.5, —2).

That natural question is how is z calculated. In general, z, is determined by the field of view of the
camera, #. A narrow field of view makes objects appear further away, while a wider field of view makes them
closer. For this assignment you should assume 6 = /2 (45 degrees).

(0,0,0)

Figure 1: A side view of the camera frustum.

Given the field of view (see Fig. 1, we can determine the distance of the pixel grid from the camera origin
from the following relationship:

h
tan(f/2) = — 1
an(6/2) 5, (1)
which, when rearranged for z, gives

B h
* 7 tan(0/2)

Once the grid cell point, z, is determined we can define the direction vector d as

d=x—s, (3)

and use it to construct a parametric ray function which emanates from the camera origin:



P(t) = s+td (4)
Sy + tdy,

= sy +tdy |, (5)
s, +td,

where t is the parametric variable which controls the scale of d.

3 Intersection Testing with Implicit Spheres

The implicit equation for a sphere centered at (cg, ¢y, ;) is given by:

(=) + (y =) + (2 = ex)? = r? = 0. (6)
The point of intersection between the ray and the implicit sphere can be found by plugging Eqn. 5 into Eqn.
6 for =, y, and z,

(80 +tdy —cp)? + (sy +tdy —c))? + (s, +td, —c,)* —1* =0, (7)

and solving for ¢t. Eqn. 7 can be solved using the Quadratic Equation:

—b+ Vb?2 — dac

ty, = % (8)
—b—Vb?2 — dac
o= ©)
a
where

a = di+d. +d (10)

b = 2(dy(sy —cz) +dy(sy —cy) +do(s; —¢z)) (11)

c = (8z— cw)2 + (sy — cy)2 + (s, — 02)2 — 72 (12)

)

All quadratic equations have two real or imaginary solutions, ¢1,ts. In our problem the solutions (roots
correspond to the intersection points of the ray with the boundary of the sphere volume. There are three
possible intersection cases that we must consider:

1. The ray intersects the sphere twice: two distinct real roots.
2. The ray grazes the sphere: two equal real roots.
3. The ray misses the sphere: two distinct imaginary roots.

We can detect these cases by examining the term inside the square root of Eqn. 9. If b — 4ac > 0, then
there are two distinct real valued roots and we end up with the first case above. Similarly, if 6> — 4ac = 0
or b?> — 4ac < 0, we end up with the second and third case, respectively.

If we have determined that there exists real valued roots, we need to identify the smallest non-negative
value of t1,t5. The smallest non-negative value corresponds to the intersection point closest to the viewer
that is not behind the viewer. If t; < 0 and t2 < 0, we do not light the pixel.

Let t* denote the smalled non-negative value. We can compute the point of intersection, p, from ¢*:

p=s+tid. (13)

Fig. 2 is an example of a raytraced sphere without the complete lighting calculations. Each pixel is set
to black if the corresponding ray intersects the sphere (b* — 4ac > 0).



Figure 2: The sphere prior to the lighting calculations.

4 Lighting

Now that p has been determined, we can perform the necessary lighting calculations for the pixel. The color
output by the Phong shader, C, is given by the formula:

C= laCa + ldCd(N ' L) + lsCs(V ' R)a (14)

where the three terms correspond to the ambient, diffuse and specular components, respectively; I, l4, and
ls are the scalar ambient, diffuse, and specular light intensities; C,, C4, and Cy are the ambient, diffuse and
specular color material vectors; « is the shininess coefficient; and N, L, V, R are the normalized normal,
light, viewer, and reflectance vectors. Fig. 4 illustrates the effect of the various lighting components.

N, L, V, and R can be calculated as follows:

p—c
N = 27°¢ (15)
o=
q—p
L = 7P (16)
llg — pll
o—Dp
Vv = 2 17
o=l (17)
R = 2(N-L)N-L, (18)

where ¢, ¢, and o are the center of the implicit sphere, the position of the light, and the position of the
camera origin, respectively.

You will also need to ensure that N-L > 0 and V-N > 0 before adding the diffuse and specular components
(recall that the dot product is positive when the angle between the two normalized input vectors is less than
90 degrees). If this statement is not true, it implies that the light is occluded by the geometry. Similarly, if
R -V <0 we do not add the specular component because the light is bouncing away from the viewers eye.



(a) ambient (b) ambient and diffuse (c) ambient, diffuse and specular

Figure 3: A Phong-shaded sphere with various lighting components active.



