
Interactive Dynamic Response for Games

Victor Zordan, Adriano Macchietto, Jose Medina, Marc Soriano, Chun-Chih Wu∗

Riverside Graphics Lab
Computer Science and Engineering
University of California, Riverside

Abstract

Dynamic response is a technique for employing a physical reaction
to an animated character. The technique utilizes a database of reac-
tions as example motions to transition to following a dynamic sim-
ulation of an interaction. The search for the example to follow has
been the stumbling block for bringing such a system into realtime
applications and in this paper, we address that issue by proposing a
number of speed-ups which make the approach faster and more ap-
propriate for an electronic game implementation. We accomplish
our speed-up by using a supervised learning routine which trains
offline on a large set of dynamic response examples and predicts
online among the choices found in the database. Also, we propose
a near-optimal routine which finds the alignment of the selected
motion for the given scenario based on a sparse sampling with an
additional speed-up over the original algorthim. With both of these
changes in place, we enjoy a tremendous speed-up with inpercept-
able difference in the final motion compared to previous published
results. Finally we offer a few additional alternatives that allow the
user to choose between quality and speed based on their individual
needs.

I.3.7 [Computer Graphics]: Three-Dimensional Graphics and
Realism– animation

1 Introduction

Physical simulation of articulated figures is becoming common
in games and so-calledragdoll effects are the current benchmark
for responsive characters. This paper proposes a fast, automatic
method to generate more realistic response in characters following
impact. In particular, we present a real-time algorithm which gener-
ates simulated physical contact and then returns to motion capture
in a timely and seamless fashion to apply a more sustained reaction
strategy. Our efforts build upon recent work in so-called dynamic
response [Zordan et al. 2005] aimed at making the algorithm appli-
cable to computer games. The primary contribution of this paper is
an interactive technique that combines a physical simulation which
responds to the collision forces with an optimized search routine
which quickly determines the best plausible ‘re-entry’ from a reac-
tion motion library following the impact. To accomplish our goal
we utilize a classification method borrowed from machine learning
which allows the system to determine the reaction based on a set
of examples. Once training is performed offline, the classification
can be performed online very quickly. Next, we align the example

∗email:vbz/macchiea/medinaj/sorianom/ccwu@cs.ucr.edu

Figure 1: The character on the left follows a physically based tran-
sition after an impact before returning to motion capture animation.

reaction with the given conditions and perform an optimized search
to determine a good match for the timing of the transition to the
motion sequence. These two speed-ups alone offer a tremendous
speed-up over the previously published algorithm for dynamic re-
sponse [Zordan et al. 2005].

The primary speed-up proposed in this research is drawn from the
insight that people employ a finite number of reaction strategies
when responding to an unexpected physical impact. As such, our
intuition is to assess the “early warning” signs just following an im-
pact that lead to a particular mode of response. Thus, rather than
searching blindly for a good fit among a large set of examples, as
done previously, we attempt to match a particular situation to the
conditions just following the impact based on experience and select
from a relatively small set of strategies. In our current implementa-
tion, we produce a large number of examples to act as our training
set using our original algorithm from 2005 – this becomes a pseudo-
memory of experiences. We then apply a classification process over
specific key attributes of these “experiences” to learn the conditions
which lead to the strategy encapsulated in the motion example of
each. In practice, we can define the strategy uniquely as the mo-
tion example itself and thus we do not need to label or identify the
strategy in any rigorous capacity. However, we use this analogy
to select a particular set of reactions which clearly depict different
type of reaction strategies, thereby reducing the example set and
avoiding unneccessary duplication. In the process, we drastically
reduce the computation time to a prediction step of the classifier
plus a narrow search to align the strategy example with the current
condition in order to generate a smooth transition.

The importance of this work is reflected in modern software pack-
ages available, for example, from Havok and Natural Motion.
While such commercial companies do not disclose their specific
algorithms, in our approach, we set our sights on automating the
generation of reaction strategies and exploring efficient search pro-
cesses to allow automatically generated, sophisticated reactions
within a real-time, online system. Given that systems, like Havoc’s
physics engine, can run many “ragdoll” character simulations si-

multaneously on today’s machines, in this paper, we focus on op-
timizations which aim at speeding up the generation of a dynamic
response and the related search for a satisfactory return-to clip from
a motion library of reaction examples. To this end, we describe a
method using a support vector machine (SVM) for classification
and a number of practical optimizations that speed-up previously
published work in dynamic response.

2 Background

The goal of generating physically based responsive characters has
been investigated by several groups of researchers such as [Oshita
and Makinouchi 2001; Faloutsos et al. 2001; Yin et al. 2003; Ko-
mura et al. 2004; Arikan et al. 2005; Zordan et al. 2005]. Often,
interaction takes into account a simulated reaction [Faloutsos et al.
2001; Zordan and Hodgins 2002; Yin et al. 2003; Mandel 2004]
that gives the impression of respondingphysically to the impact.
In addition, researchers have coupled reactions with transitions to
new motion sequences following the impact in order to capture re-
sponse behaviors [Zordan et al. 2005; Arikan et al. 2005; Komura
et al. 2005]. We also include both a simulated reaction but intro-
duce a novel routine for selecting the newtransition-tobehavior. In
this paper, our emphasis is how to perform the search for this new
behavior quickly. We contrast this work in responsive characters to
several other approaches that employ physically based motion edit-
ing [Popovíc and Witkin 1999; Abe et al. 2004; Liu et al. 2005]
in that our “edits” are meant to be computed online within a game
for example, rather than modifying the motion offline. Under this
consideration, many other techniques breakdown because they ex-
pect to be able to solve a space-time problem where lookahead is
expected. In addition, the factor of speed is a crucial issue in the
online setting.

Motion capture modifications that account for contact are highly de-
sirable because they allow characters to react and interact with their
environment, upholding and promoting consistency and richness in
generated imagery. For online applications, techniques that com-
pute character physics perpetually, such as [Faloutsos et al. 2001;
Zordan and Hodgins 2002], are not as cost effective as those which
compute the simulation only when required, such as [Shapiro et al.
2003; Mandel 2004; Zordan et al. 2005]. Our motivation for this
choice is that we anticipate that motion capture alone will lead to
better animation when impacts are not present, as well as a sub-
stantial computational savings. Shapiro et al. [Shapiro et al. 2003]
transition from kinematic to dynamic models and back again based
on a supervisory control scheme. Unlike their work, we give pref-
erence to the motion capture animation and use the simulation only
as a vehicle for creating the reaction. Mandel also sets his focus on
reaction after impact. However, he proposes specialized controllers
for falling and “settling” to accomplish his transition back to mo-
cap. In contrast, we treat the controlled simulation as a sophisti-
cated interim system with emphasis and explicit trust placed on the
mocap examples. As such, we use a minimal simulation interval,
often less than a half a second long. Differing from the dynamic
response approach presented in 2005 which highlighted the qual-
ity of the motion, the key point we address is making the method
computationally efficient, focusing on streamlining the search cal-
culations. As such, in this paper, we present novel contributions
which show improvement towards making the approach plausible
for games.

3 Overview

The overview of our system is outlined in Figure 2. In addition, here
is a brief breakdown of our dynamic response algorithm adapted
from Zordan et al. [2005].

1

2

3

4

5

6

1 2 3 4 5 6

Figure 2: Timing diagrams. The top event diagram details the var-
ious stages of a dynamic response from the game’s timeclock, be-
ginning (at Event 1) from the time of action invocation, say through
a button press for an attack. Various stages are shown until the fi-
nal blend is complete (Event 6.) The curves show the progression
of motion from the previous motion capture (solid, left) to the phys-
ical simulation (dotted,) to the blend (dashed,) and finally back to
the motion capture reaction (solid, right). Events occur chronologi-
cally based on the algorithm: Event 2 is the collision; Event 3 is the
classification and search; Event 4 rewinds the system; Event 5 com-
putes the final blend for the transition. The bottom diagram shows
the stages of computation along with their relative CPU-time costs.
The additional time slices in the CPU diagram denote the combined
cost of classifying the attributes of the new interaction and perform-
ing the optimized time-alignment (light-shaded area) and rewinding
the system to begin the blend (Event 5).

• Initialized from mocap, interacting characters feel forces and
react based on ragdoll-like forward simulation during an un-
expected interaction.

• Next, an appropriate motion to follow the interaction is deter-
mined using the simulated motion based on a reaction library
of motion capture examples.

• Finally, the calculated motion is smoothly blended into the
target motion for the transition back to mocap.

For additional details, we refer readers to the mentioned paper. In
contrast to the original algorithm, to afford our interest in making
a real-time system, we opted against adding the second simulation
pass described in the original algorithm. In addition, in 2005, we
pointed out that seventy percent of our computation time is lost
to search. Our current aim is to cut the search time substantially
without sacrificing quality.

4 Optimizing search

As Mandel describes in his thesis [2004], search time can be con-
trolled directly by choosing the number of reaction examples in the
search database. Indeed, searching over a small set of reactions
leads to faster running time but the hit in quality makes a small
number of example reactions a poor choice. In contrast, if we uti-
lize a database of reactions and search over it exhaustively as Zor-
dan et al. [2005] propose it may produce high quality motion but
at the price of interactvity. To compromise between these two tech-
niques, we propose a twofold solution. First, we train a support
vector machine to classify the choice of motion selection based on
key features captured immediately after an interaction. And, sec-
ond, we optimize the timing of the reaction with the given scenario
by sampling to find a rough timing and fine tuning using a gradient
search method as a final step.

4.1 Support Vector Machine

Before we can create a transition, we must find a motion capture
sequence which closely matches some interval of the simulation
trajectory following the impact. To do this, we use a Support Vec-
tor Machine (SVM), a machine learning algorithm to quickly clas-
sify (online) the physical motion just following an impact among
the set of examples in our database. Many other researchers
have worked on classifying human activities for various purposes
(see [Int 2005]). In a recent example, Chai and Hodgins [2005]
proposed an approach for a low-cost motion capture mechanism in
which they classify human motion from a small number of control
signals by employing low-resolution video cameras (webcams) and
a small set of retro-reflective markers. Our classification problem is
unique in that we select a motion capture example based on a syn-
thetic, simulated human motion generated for a very short duration
(only 100msec following initial impact.) Our use of SVMs was
motivated by the speed and accuracy compared to other methods
(e.g. K-nearest neighbors) as reported in related work [Faloutsos
et al. 2001].

Among other applications SVM is a useful technique for data clas-
sification [Boser et al. 2002]. Intuitively, SVM operates by finding
a partition in the space of input data. Specifically, SVM is used
to fit functions which maximize the error margin between samples
found in a training set. Faloutsos et al. [2001] employed SVMs in
the training of preconditions for behavior controllers. We use SVM
to select among a set of possible reactionstrategiesbased on key
characteristics sampled just following an interaction. SVM takes a
set of training data to create a model which contains attribute infor-
mation to predict the target class of testing data. The training data
samples include both a class label and a set of features. To generate
this data, we run an exhaustive search (offline, and only once) and
recorded the findings based on the desired feature vector.

Formally, let T = (x1, α1), ..., (xl, αl) be a set of training
observations wherexi ∈ Rn are the samples of the attribute vector
with n dimensions andαi are the sample labels associated with
each observation selected by the exhaustive search. The SVM is
then created by solving the following optimization problem [Boser
et al. 2002].

minw,b,ξ
1

2
wT w + C

∑

l
i=1ξi

subject to yi(w
T φ(xi) + b) ≥ 1 − ξi ,
ξ ≥ 0.

Training vectorsxi are mapped to a multi-dimensional space ac-
cording toφ with separating partitions found with maximal margins
by varying weightsw and probability estimatesb. CostC > 0 is
a weighting penalty for errors termsξi. Further,φ(xi)

T φ(xj) is
defined to be kernel functionK(xi, xj) and for our purposes, we
a use polynomial kernelK(xi, xj) = (γxT

i xj + t)d, γ > 0 with
γ, t, d as user-defined kernel parameters. In our implementation,
we employed the library LibSVM [Chang and Lin 2001] which in-
cludes a helpful instruction on using SVMs and useful defaults for
several of the terms defined.

4.2 Feature vector

An important characteristic that contributes to the success of our
work is the careful choice of the feature vector for the SVM. Be-
cause increasing the size of the feature vector in general requires
increasing the size of the training set, keeping the length of the vec-
tor to a minimum is desirable. And, given that we want good clas-
sification, the feature vector cannot be too small or we will not be
able to differentiate certain reactions (see Colorplate, left column.)

Given the application in mind (determining the response after an
interaction in a timely fashion,) it is obvious that we should include
information about the state of the character in the feature vector,
but we must be selective. To this end, we collected a set of metrics
from the character starting from the initial contact. In particular,
we recorded the 6 degree-of-freedom state (with state derivative)
for the bodies of the simulation along the spine (pelvis, stomach,
chest, head) at tenth-of-asec time slices from 0.0 to 0.3sec fol-
lowing the collision. In addition, we recorded specific information
that was valuable for balance: the state of the feet and the position
and velocity of the center of mass (COM) for the same time slices.
For our results, we tested two subsets of this data to find the feature
vector that gave us the highest classification accuracy. Our hypoth-
esis was that a narrow set of hand-selected features would do well
given our observations of the pairwise comparisons (in Colorplate,
left column) and thus we compiled a small sets of twenty features
which included the balance terms and a sampling of the body states.
In addition, we tested a larger feature set with all but the balance
terms (COM and its derivative). Surprisingly, we found our highest
accuracy with this vector which combined only the recorded state
information (including the feet) into a single vector. Interestingly,
we also found by including successive time slices that the accuracy
did not improve by including slices after 0.2sec. But, the accuracy
dropped significantly if we removed the time slice at 0.0sec. More
details about accuracies and specific findings appear in the results
(Section 6.2.)

5 Optimizing time alignment

The example selected from the database by the SVM classifier en-
capsulates the sustained reaction that the character will employ in
response to the interaction. However, the timing which lines up this
motion example with the simulated motion is still unknown. Re-
call, timing is not included in the classification step. To determine
the time alignment, employing an exhaustive search will guaran-
tee the best fit but is computationally intensive. Thus, we offer an
optimized routine.

We formulate the timing problem as selecting the frame indices
from the simulated motion and the reaction motion capture clip that
best match the two motion sequences according to the following
error: Di =

wi

(
∑n

b=1
wpb‖pb(fsi) − pb(fmi)‖ + wθb‖θb(fsi) − θb(fmi)‖

)

wherewi is the window weight over thei frames,fs andfm are
aligned frames from the simulation and selected motion clips for
each bodyb. The weightswpb andwθb scale the linear and angular
distances for each body. Importantly, an alignment step removes
the global differences and facing direction between two frames for
every tested window.

Optimally matching the timing is not trivial because the space is ir-
regular with several local minima (see Colorplate, top right.) In this
graph we do, however, see an obvious bias toward the beginning of
the simulation clip motion (shown at the front of the graphic, mostly
in blue) and we exploit this bias in our fast timing search. To avoid
a slow stochastic search, we take a sparse, uniform sampling of the
timing space (we sample every ten frames along both axes) and then
perform a gradient-based refinement search from the best of these.
In the refinement step, we employ the BFGS algorithm from Nu-
merical Recipes [Press et al. 1994]. In practice, in comparison to
exhaustive search (applied only to for the time alignment problem,)
we see tremendous speed-up over exhaustive search with slight, but
unnoticeable differences in the final result. In addition, we bias the
samples toward the beginning of the simulation track and cut the
search if no improvement is found in subsequent sample sets.

6 Return to motion capture

Once the timing for the selected return-to motion example is final-
ized, we are able to compute the remainder of the simulation and
the final blend. Computing optimal transitions, for example based
on physical principles, can produce pleasing results and indeed the
question of how to compute such transitions is a research problem
unto itself [Rose et al. 1996]. However, under our time-critical ap-
plication, we opt for a straightforward interpolation to produce the
transition. Our fixed-length, blended transition creates a smooth
sweeping motion, in a computationally efficient manner, that brings
the computed simulation following the impact to the same state as
the selected motion.

6.1 Controlling the posture on the fly

One noted advantage to our approach is that the reaction target mo-
tion can be selected before computing the entire simulation. As
soon as the timing is selected (Section 4.2), we know where the
character is headed after the transition and can inform the simula-
tion from that moment forward. That is, because we know ahead
of time where the character should go, we can add this into the
tracking controller for the duration of the simulation. In contrast,
the algorithm presented by Zordan et al. [2005] requires a second
simulation leg to incorporate this information. We incorporate the
“lookahead” information in a very similar fashion, but in our case
in thefirst simulation pass.

During the transition, a torque controller tracks a blended sequence
of joint angles from the previous motion capture segment to the
next, starting from the instance the time alignment step is complete
(in the timeclock of the game.) Like the previous approach, the
controller uses an inertia-scaled PD-servo at each joint. The desired
sequence which is tracked by the controller is generated on the fly
by blending. To find the desired postures, two frame samples, one
from the previous motion capture example and the other from the
return-to motion capture sequence, are interpolated using spherical
linear interpolation (slerp) with an ease-in/ease-out (EIEO) weight-
ing parameter that varies based on the time of the transition inter-
val. Hand-selected springs and damping values are held fixed for
the duration of the transition.

6.2 Creating a transition

Once the final simulated motion is generated, we perform a sim-
ple blend for the root position and orientation error as well as the
joint angles across the transition sequence. For translation, linear
interpolation is employed. For rotations, our system interpolates by
slerping quaternions, again using a simple EIEO weighting in time
across the transition. While this approach is extremely simple, it
produces visually pleasing results in a timely fashion.

7 Implementation and Results

The character we chose includes 39 independent degrees of free-
dom (DOF), three each at the ankles, knees, hips, waist, back,
shoulders, elbows, and neck as well as the six DOFs of the root.
The dynamic simulation was generated using Open Dynamic En-
gine [Smith 2007] with ball and sockets for each joint of the ar-
ticulation. Mass and inertial parameters are generated by ODE
based on the geometrical models for the bodies shown in the fig-
ures and we use ODE’s collision tools. Note, we exclude the timing
of the physics in our analysis under the assumption that commer-
cial physics engines are fast enough. Proof in modern games amply
shows that this assumption is safe. Our implementation in ODE is

a practical choice for us but not a recommendation for game devel-
opers. To align with the focus of our paper, speed up of the search
routine is the emphasis of our timing approach.

7.1 Reaction Strategies

Our motion capture reaction library contains a variety of responses
based on contact varying from light to heavy. While reactions to
full contact strikes were omitted during the time of capture to avoid
injury, strong pushes were performed that resulted in extreme re-
sponses without harm to the actor. In total, the library includes 110
reaction examples.

In our implementation, we experimented with the number of exam-
ples taken from this database for use in the classification. At one
extreme, we could include all of the examples in order to maxi-
mize the suite of reactions - however, we would require a very large
number of training observations to obtain reasonable accuracy for
the SVM. To ensure a good fit, we keep the number of examples
in the reaction database small instead. To select the reactions to in-
clude, we recall our idea of the small set of reaction strategies and
hand select a desired set of examples. In particular, we include a
single example for each of the following strategies for the anima-
tions included in this paper:

• Take a single step forward (2 - one small, one large)

• Take multiple steps forward

• Forward roll

• Side fall

• Step backwards (2 - one small, one large)

• Take multiple steps back

• Roll backwards

• Upper-body reactions (3 - one each front, side, back)

This set is not unique, for example we could also include a back-
ward fall. Also, while the length of this list of actions is fairly com-
parable to the types of actions commonly found in a game today,
recall that each entry in this list of strategy examples (as well as
their left-right mirrors) is modified for timing and alignment with
every computed interaction after impact forces are applied to create
a purely physical interaction. In the results section, we further de-
scribe the benefits and costs related to the choice of the number of
example reactions.

7.2 Results

To show our results we conducted a series of experiments to test the
timing and robustness of our approach. In brief, we found the vi-
sual quality of our results were comparable to the original dynamic
response algorithm but with a speed up of well over an order of
magnitude.

To test our algorithm we initially trained the SVM on approximately
500 data examples. We computed these by “throwing” a heavy ball
at the character while varying its angle, speed, starting height and
target landmark on the character. We chose the ball because it was
easy to vary in a procedural manner. We apply the training to a
basic example of walking. This example was recorded separately
from the reaction database. Using the reaction set described in the
last subsection and an abridged attribute vector (with 20 terms) we
were able to find an accuracy of 75% compared to the training set
for new walking examples. If we modified the attribute vector for
the SVM to include the larger set of features (See Sect. 4.2), we

Figure 3: Selection comparison. Frames from two reactions over-
layed, the character for the original is shown on the left; the right
is from the current approach. Even though the animations are fairly
different, both are visually believable (see accompanying video for
visual comparison.)

could raise that accuracy to 80% but suffer a 2x timing hit for clas-
sification. In an analysis per reaction strategy, certain responses es-
pecially those where the ball hit from the back, the SVM was 100%
accurate at identifying the exact same strategy, but others were se-
lected at lower accuracies (40%-60%). Upon inspection we found
only a few examples appearing in our training set for the lowest-
accuracy reactions. We then re-ran these same experiments on a
more diverse training set with approximately 5500 data examples
and found an accuracy of 86% and 94% for the small and large fea-
ture vectors, respectively. Several sample animations, including a
comparison with the original exhaustive search, appear in the as-
sociated video. A filmstrip appears also in the Colorplate (right
bottom, left filmstrip).

We applied this classification SVM to new scenarios in attempt to
assess the robustness of the algorithm (i.e. without retraining the
SVM.) We replaced the character’s motion of walking with a new
animation of idle for fighting and utilize the SVM (trained on walk-
ing) to select the reaction strategy. Sample animations appear in
the video and a filmstrip appears in the Colorplate (right bottom,
middle filmstrip). We found a comparable accuracy and quality to
the exhaustive search for a small random set of animations from
our training set. To assess more thoroughly, we computed a new
SVM based on new training data computed specifically for the idle
motion clip and found that both SVMs were equivalent in their ac-
curacy for the high accuracy reaction strategies but an improved
accuracy for some of the previously low reactions was observed.
Next, we replaced the ball with a human opponent and used the
“walking” SVM to compute new responses. We could not easily
create an SVM for the character opponent because the training data
was not easy to generate automatically, however, for the animation
test cases we looked at the SVM for walking again gave compara-
ble accuracy and produced quality motion (Colorplate right bottom,
right filmstrip.)

We feel it is important to note that the SVM’s accuracy is not a
direct measure of the quality of the final motion. While we quote
accuracy percentages because it is a common metric in the assess-
ment of SVMs, in our application, the classification of the SVM can
be “wrong” (because it does not match the original system) but still
produce a suitable animation. For example, we found “errors” such
as choosing to lean back rather than taking a step as in Figure 3.
Also, with more carefully placed training examples, we found that
we could continue to improve the accuracy of the SVM, however,
we felt the results coming out of the SVM were already reasonable

reaction original (sec) optimized (sec)
step forward 1.82 0.08

step backward 1.96 0.06
forward roll 1 1.74 0.07
forward roll 2 1.95 0.07

Table 1: Timing comparisons. Time cost of CPU is shown between
the unoptimized and optimized versions for three reaction strategies
with the last being shown for two example motions. The figures
shown are composite timings for the reaction selection and timing
alignment steps. All timing tests were run on an AMD Athlon X2
5000+ processor.

with the data set of 5500.

Another important measure, next to accuracy/quality, is computa-
tion time. Table 1 summarizes our timing speed-up to the original
algorithm. Notably, after training, the prediction using SVM clas-
sification was a negligible part of the CPU cost (1-2msec.) and
varied based on the size of the attribute vector. This resulted in the
largest part of our time savings. For the time alignment compo-
nent, the original CPU-cost was between 0.21 to 0.37sec, of this
approximately 0.04sec was a fixed cost associated with orienting
and positioning the test motion repeatedly before testing each time-
alignment fit which carried over in the optimized timing alignment
presented. In aggregate, we see that the optimizations presented
gave an approximately 20x speed-up on average.

8 Conclusions

In this paper we describe an approach that computes fast dynamic
response to unanticipated interactions for game and other online
applications. To accomplish this goal, we introduce a two machine
learning methods that speed up 1) the selection of an appropriate
motion capture clip from a set and 2) the optimal alignment of that
motion, both based on the conditions before and just following the
specific interaction. Our approach is scalable in the size of the re-
action set given that the selection process using SVM does not lead
the calculation time, based on our findings. Instead, we found the
upper bound on the number of reactions is derived from the need for
an exorbitant number of observations to train the SVM. (This may
be handled with multi-resolution clustering methods.) However, for
our implementation, we experimented with a much smaller set of
example reactions, analogous to a single example each for a hand-
picked set of strategies, and we feel we found a good compromise
between the number of training examples needed and the accuracy
of the SVM. One alternative for future work might be to group ex-
amples into strategies, thereby keeping the classification size small
while including a more diverse set of reactions. Finally, we show
that our system is capable of generalizing to new situations - the
SVM we trained for a ball hitting a walking character was used to
generate motion for two characters interacting (Figure 1).

We conclude with a few practical remarks related to the “dynamic
response” approach, based on our experience with this project.
First, we believe that dynamic response is best suited for situations
with large disturbances and that other techniques are better for small
disturbances [Zordan and Hodgins 2002; Yin et al. 2003; Komura
et al. 2004]. In our experimentation, the small disturbance reactions
lead to less pleasing motion particularly for parts of the body not as-
sociated with the interaction (e.g. the feet slide too much.) Next, we
skipped the second simulation pass described in the original algo-
rithm in lieu of a faster algorithm. We could have included this sec-
ond pass, but felt it was not worth the computational cost because it
only gave way to minor perceptual improvements. We recommend

the choice to include it or not be made on a case-by-case basis de-
pending on the sensitivity of the audience and the computation time
available.

There are continuing trends toward more physically simulated char-
acters and the game industry is already moving beyond ‘rag-doll’-
type effects for characters. Through techniques like the one de-
scribed here, physics-based characters can become more usefuland
believable and through such advances, we hope to continue to im-
prove the responsiveness of game characters and the immersiveness
of games.

References

ABE, Y., L IU , C. K., AND POPOVIĆ, Z. 2004. Momentum-based
parameterization of dynamic character motion. In2004 ACM
SIGGRAPH / Eurographics Symposium on Computer Animation,
173–182.

ARIKAN , O., FORSYTH, D. A., AND O’BRIEN, J. F. 2005. Push-
ing people around. InSCA ’05: Proceedings of the 2005 ACM
SIGGRAPH/Eurographics symposium on Computer animation,
ACM Press, New York, NY, USA, 59–66.

BOSER, B., GUYON, I., AND VAPNIK , V. 2002. A training al-
gorithm for optimal margin classifiers. InIn Proceedings of the
Fifth Annual Workshop on Computational Learning Theory, pp.
144-152. ACM Press.

CHAI , J., AND HODGINS, K. 2005. Performance animation from
low-dimensional control signals.ACM Trans. Graph 24, 686–
696.

CHANG, C.-C., AND L IN , C.-J. 2001. LIBSVM: a li-
brary for support vector machines. Software available at
http://www.csie.ntu.edu.tw/ cjlin/libsvm.

FALOUTSOS, P., VAN DE PANNE, M., AND TERZOPOULOS, D.
2001. Composable controllers for physics-based character ani-
mation. InProceedings of ACM SIGGRAPH 2001, 251–260.

INTERNATIONAL WORKSHOP ONHUMAN ACTIVITY RECOGNI-
TION AND MODELING. 2005. Segmentation and Classification
of Human Activities, HAREM.

KOMURA, T., LEUNG, H., AND KUFFNER, J. 2004. Animating
reactive motions for biped locomotion. InProc. ACM Symp. on
Virtual Reality Software and Technology (VRST ‘04).

KOMURA, T., HO, E. S.,AND LAU , R. W. 2005. Animating re-
active motion using momentum-based inverse kinematics.Com-
pute Animation and Virtual Worlds 1, 16, 213–223.

L IU , C. K., HERTZMANN, A., AND POPOVIĆ, Z. 2005. Learning
physics-based motion style with nonlinear inverse optimization.
ACM Transactions on Graphics 24, 3 (Aug.), 1071–1081.

MANDEL , M., 2004. Versatile and interactive virtual humans: Hy-
brid use of data-driven and dynamics-based motion synthesis.
Master’s Thesis, Carnegie Mellon University.

OSHITA, M., AND MAKINOUCHI , A. 2001. A dynamic motion
control technique for human-like articulated figures.Computer
Graphics Forum (Eurographics 2001) 20, 3, 192–202.

PLAYTER , R. 2000. Physics-based simulation of running using
motion capture. InCourse notes for SIGGRAPH 2000.

POPOVIĆ, Z., AND WITKIN , A. 1999. Physically based motion
transformation. InProceedings of ACM SIGGRAPH 1999, 11–
20.

PRESS, W., TEUKOLSKY, S., VETTERLING, W., AND FLAN -
NERY, B. 1994.Numerical Recipes in C. Cambridge University
Press, New York.

ROSE, C., GUENTER, B., BODENHEIMER, B., AND COHEN,
M. F. 1996. Efficient generation of motion transitions us-
ing spacetime constraints. InProceedings of ACM SIGGRAPH
1996, 147–154.

SHAPIRO, A., PIGHIN, F., AND FALOUTSOS, P. 2003. Hybrid
control for interactive character animation. InPacific Graphics
2003, 455–461.

SMITH , R., 2007. Open dynamics engine. www.ode.org.

Y IN , K., CLINE , M. B., AND PAI , D. K. 2003. Motion pertur-
bation based on simple neuromotor control models. InPacific
Graphics.

ZORDAN, V. B., AND HODGINS, J. K. 2002. Motion capture-
driven simulations that hit and react. InACM SIGGRAPH / Eu-
rographics Symposium on Computer Animation, 89–96.

ZORDAN, V. B., MAJKOWSKA, A., CHIU , B., AND FAST, M.
2005. Dynamic response for motion capture animation.ACM
Trans. Graph. 24, 3, 697–701.

Interactive Dynamic Response for Games
Zordan, Macchietto, Medina, Soriano, Wu

Figure 1: Pairwise comparisons. Various scalar values taken
from the simulation just after contact are compared with the
colors representing unique reaction motions found by the ex-
haustive search routine. It is clear to see some structure in these
plots but none alone are suitable for classification.

Figure 2: Solution space for alignment. The vertical axis (and
color) is the window error for time alignment found from com-
paring the reaction example and the simulated motion. The
motion frames appear on the horizontal axes for the reaction
example (front axis) and the simulation reaction sequence (into
the paper). Note, the error largely increases with depth into the
paper which suggests that earlier in the simulation motion ex-
ample is usually better for matches in the time alignment prob-
lem.

Figure 3: Animation filmstrips. Three examples of dynamic
response from our system (view top to bottom).

