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ABSTRACT OF THE THESIS

Momentum-Based Balance Control For Simulated Characters

by

Adriano Patrick Macchietto

Master of Science, Graduate Program in Computer Science
University of California, Riverside, December 2008

Dr. Victor B. Zordan, Chairperson

Within the past five years the control of angular momentum for bipedal robots

has gained popularity within the robotics community. Research has shown that

for a wide variety of motions both linear and angular momentum must be tightly

regulated to preserve stability. This work expands upon these recent developments

in robotics to develop a controller for a physically-simulated character applicable

to the field of computer animation. Through an efficient quadratic optimization,

this research develops a robust, real-time controller capable of accurately tracking

a statically-stable reference motion in the presence of external perturbations. In

addition, the system is shown to be generalizable to characters with non-humanoid

morphologies. The output of the system produces characters which adapt to external

disturbances in a natural, life-like manner while simultaneously retaining the overall

style of the tracked motion.
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Chapter 1

Introduction

From the beginnings, character animation researchers have been interested

in understanding and virtually recreating the rich variety of motions that humans

and other animals exhibit. In the past 30 years a great amount of progress has been

made in synthesizing human motion. Unfortunately, there still does not exist a

system which can synthesize a rich variety of convincing, physically-interactive mo-

tions automatically. Our current lack of understanding of human biomechanics and

neuroscience has forced character animation researchers to avoid these limitations

by modelling what is understood, and compensating for missing knowledge with

assumptions or data. Despite the limitations, much progress has been made in the

past 10 years towards developing robust, physically-interactive character animation

systems.

This thesis loosely categorizes all 3D character animation systems into one

of three broad categories: physically-simulated, data-driven, or procedurally gener-

ated. Physically-simulated approaches generate motion by controlling the dynamics

of the character through control of the actuator forces. Data-driven approaches

achieve interactivity by splicing and editing motions together to generate new mo-

tions based upon the requirements. Lastly, procedural approaches generate motion

through a set of user-specified rules. Each approach has proved useful at gener-

ating motion effectively under different requirements. Although the categories are

fuzzy, as many systems can be a hybrid of all three, this distinction is important as
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it provides a means of assessing the potential strengths and weaknesses of a given

system.

Up until recently, data-driven approaches have commanded the greatest

commercial appeal due to their strength of preserving physical-realism and motion

style. Any motion which is needed can be captured or keyframed offline or extrap-

olated from an existing motion database[20, 3, 4, 13]. Limitations of data-driven

approaches lie in their inability to generalize well to a variety of interesting simula-

tion conditions: conditions which are too dissimilar to motion database examples or

too hazardous, complex or laborious for the capture crew to capture or keyframe.

Realtime applications with unpredictable environments and user input suffer most

dramatically from this limitation, often resorting to playback of canned responses

when interaction is required. Despite the limitations of data-driven approaches,

it would be difficult to find a robust full-body character animation system which

utilizes no data at all.

Procedural character animation avoids some of the limitations of data-

driven approaches by defining a set of rules which are used to synthesize motion

automatically. As one would imagine, the rules may be potentially difficult for

the animator or programmer to specify. Procedural character animation has found

application for animating simple character animation tasks, or for producing an-

imations for characters with fictitious morphologies[16, 14]. For example, in the

PC videogame Spore users are allowed to create creatures of varying morphologies

which are then animated automatically according to a set of developed-specified re-

lationships between the body parameters. Procedural systems have great flexibility,

but unfortunately, due to the complexity of specifying the rules, are time consuming

and difficult to implement robustly.

Lastly, we have physical simulation, the character animation category of

this thesis. In contrast to procedural or data-driven approaches, physical simulation

systems generate motion by controlling the dynamics of a physical representation of

the character[10, 27, 26]. Physical simulation guarantees physically-realistic motion,

which is also the reason why physical-simulation is difficult. Character simulation

requires the control of a highly non-linear dynamic system of ODEs. For a long
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time simulation approaches lacked commercial viability due to the limited amount

of computational resources available for solving the dynamics and the difficulty of

producing efficient, robust, convincing control algorithms. Up until very recently,

physical simulation had only been used sparingly, mostly for passive ragdoll motions

which do not require complex control. Despite the control difficulties, much progress

has been made and the state of physical simulation has finally reached the point of

commercial appeal, with NaturalMotion’s Euphoria animation system serving as a

notable example. Physical simulation offers the greatest possibility for synthesiz-

ing robust, physically-interactive motion since it attempts to simulate the physical

processes which are responsible for producing the motion in the real world.

It is helpful to further subdivide the category of physical simulation into

more concrete subfields by introducing the notion of bottom-up and top-down phys-

ical simulation, each of which tackle the problem of physical simulation in a much

different manner.

Bottom-up approaches model the physical processes of the character anatomy

accurately which give rise to emergent, desired characteristics within the motion. For

instance, a bottom-up modeller would approach the problem of creating a full-body

animation system by carefully placing muscles, bones, and then create a neuromus-

cular controller which simulates the human brain at the neural level. Of course,

without the computational resources or the knowledge needed to simulate and con-

trol the complexity of the human anatomy, bottom-up approaches are typically much

more limited in scope, tending to focus on simpler isolated systems that are more

understood. Bottom-up approaches offer the greatest potential for generating mo-

tion since all of the processes responsible for human motion are accurately modelled.

In addition, due to the extra emphasis on modeling the complexity of the human

anatomy, they also have a greater degree of generalizability to unforeseen simula-

tion conditions. In contrast, top-down approaches work in the opposite direction,

by achieving specific characteristics by physically modeling only what is needed to

create the behaviors of interest. In the previously presented example, a top-down

modeller might instead simplify the human body with a set of 10-20 bones, ap-

proximate the entire muscle system with simple 1-DOF or 3-DOF motors, and then
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command the entire system using a set of simple control laws which most likely use

motion data to some extent based upon the required needs of the system. Top-down

approaches are typically concerned with performance and controllability, and thus

sacrifice modelling accuracy when it isn’t important to generate the characteristic

of interest.

Top-down simulations have typically dominated the field of Computer Ani-

mation in the simulation category for full-body character animation since it is simply

not computationally feasible to animate the entire character without making many

modeling simplifications. Instead, bottom-up approaches, have been used for sim-

pler processes where high-level decision-making is less of an important issue, such

as swallowing or breathing; and to field of Biomechanics where the principle goal is

to understand certain aspects of human motion and accurate modelling is essential.

While both physical-simulation approaches can be used to synthesize re-

alistic, interactable motion, the problem of control still remains a very open issue

for both. Control can be stated as the requirement that a character follows a set

of objectives as closely as possible and as convincingly as possible (i.e. the charac-

ter does not fall over when a suitable recovery strategy exists that a human would

employ). The question of how it is possible to simultaneously control a character

subject to all of the natural laws while preserving realism is not fully understood.

Control algorithms have been devised to tackle specific categories of motion, such as

locomotion, but no robust high-quality, general-purpose controllers currently exist.

One of the most fundamental problems with control is balance: how to

ensure the character remains standing when its real-world equivalent should. A good

controller should be able to pick strategies which are similar to those that a human

would employ. In addition, it should be able to handle unexpected disturbances

robustly. A great deal of work has been devoted to developing balanced motion

within various contexts [7, 24, 21, 25]. The context this thesis is concerned with is

with real-time, systems subject to all of the physical conditions present in the real

world: friction, unilateral contact, external forces.

This thesis develops a realtime, top-down, physically-simulated system ca-

pable of balancing during a wide variety of statically- stable single-support and
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double-support motions. While the focus of this work is on statically-stable mo-

tions, there is reason to believe that it could be extended to statically-unstable

motions such as locomotion. This system employs a controller capable of following

motion capture data accurately while allowing for external disturbances on a wide

variety of character morphologies. In addition, we present a robust system archi-

tecture which can be extended to accomplish secondary goals in addition to motion

tracking.

The developed controller achieves its robust control by regulating two im-

portant quantities discovered to be of critical importance to balancing behaviors:

linear and angular momentum. While much research has already been devoted to

controlling the linear momentum of the simulated character, only until recently have

researchers begun to pay attention to the importance of angular momentum regu-

lation [18, 15, 23, 22]. As this work will show, the regulation of angular momentum

is essential to statically-stable single-support motions, and, in the presence of large

perturbations, double-support motions as well.
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Chapter 2

Background

This section will introduces concepts important to understanding mate-

rial presented in later chapters. A basic understanding of rigid body mechanics is

assumed. It will begin by introducing rigid body linkages, otherwise known as artic-

ulated bodies. From there, the two different parameterizations for articulated rigid

bodies will be introduced. Finally, this chapter will conclude with a presentation of

the equations of motion.

2.1 Articulated Rigid Bodies

An articulated rigid body (ARB) may be defined as a system of n rigid

bodies connected together by m joints1. A free-floating rigid body has 6-DOFs: 3

degrees of freedom for position, and another 3 degrees for rotation. Joints may be

viewed as constraints which reduce the degrees of freedom of the rigid body system

by 6n−j where j is the degrees of freedom of the joint. A 1-DOF hinge joint2, a joint

which only allows both bodies to rotate about a common axis, reduces the DOF of

the system by 5. For a two body ARB connected by a revolute joint the DOFs of the

system becomes 2∗6−5 = 7. Articulated rigid bodies are critical to virtual character

simulations since humans may be modelled efficiently as a simplified system of rigid

1For ARBs without kinematic loops, n = m, as the root is connected by an invisible joint to the
inertial reference frame

2Hinge joints are also commonly referred to as “revolute joints”
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bodies connected together by joints.

Depending on the type of system being modeling certain joint may be

powered or unpowered. A powered joint has the ability to internally generate forces

to push the connected bodies. It may be the case that a powered joint is not able to

actuate in the same space of its motion, in which case, the motion space is not equal

to the actuation space. A joint which exhibits a non-empty actuation space which

is a strict subspace of the motion space is referred to as an under-powered joint.

For humanoid character simulation models, typically all joints which are actuable

are also fully-powered.

For an ARB simulating a humanoid character, one link is connected to the

inertial reference frame via a special 6-DOF, unpowered, floating joint. This link is

known as the root. Unlike other joints, a floating joint removes no freedom from the

ARB. As we will see in subsequent sections, controlling a character with 6 unpowered

DOF in the presence of unilateral ground contact forces is the fundamental control

problem.

A character with n bodies may be modelled with 1 floating joint for the

root, and another n − 1 3-DOF ball joints or 1-DOF hinge joints, depending on

whether the character is 2D or 3D and whether we wish to model the knees and

elbows as hinges. This work is concerned with the 3D balance problem so all non-

root joints are modelled as 3-DOF ball joints. For joints which don’t exhibit ball

joint behavior, such as the knees and elbows, we utilize soft joint limits discussed in

Chapter 6. Soft limits enable compliance that the knees and elbows exhibit which

hard constraints do not model.

2.2 Maximal and Reduced Coordinate Parameteriza-

tions

The previous section discussed ARBs, but did not describe how the ARB

system is parameterized. The type of parameterization is of great importance, since

issues of stability, performance, and simplicity of control all depend on how the sys-

tem is represented. Two basic approaches exist for parameterizing ARBs: maximal
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and reduced coordinate.

Maximal coordinate parameterizations treat each body in isolation, requir-

ing 6 scalars for each body. Joints are represented using a set of dynamic constraint

equations enforced during the forward dynamics solve. Maximal coordinate ap-

proaches are popular since they do not require much extra effort to integrate in

pre-existing rigid-body physics systems. However, they suffer from problems of

numerical drift where bodies can become detached at the joint and need to be cor-

rected3. If the character is to be actively controlled (i.e. beyond a simple ragdoll),

it will often be necessary to convert between Cartesian and joint space. [6] contains

a thorough discussion on the advantages and disadvantages of maximal-coordinate

approaches.

In contrast to maximal coordinate methods, reduced coordinate methods

parameterize the system such that joint constraints are implicitly enforced in the pa-

rameterization. Instead of the parameters describing the position and orientation of

the body, reduced coordinate systems describe the relative transformation between

bodies. For example, the static state of a system comprised of two floating bodies

connected by a revolute joint can be described using 7 scalars, 6 for the translation

and orientation of the system, and 1 to describe the rotation about the axis of the

revolute joint. Since reduced coordinate approaches use the joint parameters as

state variables, controlling these systems is more intuitive than maximal coordinate

approaches. A reduced coordinate parameterization is used in this work.

2.3 Equations of Motion

The equations of motion for an ARB can be written in matrix form as:

Q = H(θ)θ̈ + C(θ, θ̇) +G(θ) (2.1)

where θ, θ̇, θ̈ are the generalized coordinated, accelerations and velocities; Q are the

generalized forces; H is composed of the inertial coefficients; C represents centripetal

3This limitation may be also beneficial as it allows for the modeling of soft joints which are not
easy to model with reduced-coordinate parameterizations
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and Coriolis forces; and G represents the gravitational force. Eqn. 2.3 can be derived

from a Lagrangian formulation. For more detail see [11].

Forward dynamics algorithms solve for θ̈ in Eqn. 2.3, while inverse dy-

namics algorithms solve for Q. Typical approaches linearize Eqn. 2.3, and solve

numerically. Non-recursive numerical approaches can solve Eqn. 2.3 in O(n3) time.

In contrast, recursive forward dynamics algorithms can solve Eqn. in O(n). For a

more detailed overview of numeric reduced-coordinate forward dynamic algorithms

see [12, 11].
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Chapter 3

Balance Control Strategies

This section will provide an overview of useless balance control metrics for

statically-stable controllers. From these metrics, control laws for the regulation of

linear and angular momentum will be developed.

3.1 Static and Dynamic Stability

A character may be considered statically-stable if it’s center of mass (CM)

projection onto the support polygon is within the support polygon boundaries. Fig.

3.1a provides an example of a statically-stable character. As long as the character

is able to control itself such that the center of mass projection remains within the

support polygon, the character will not tip over.

Unfortunately, the static-stability requirements are too restrictive for gen-

erating a wide-variety of natural biped motions. For example, during biped loco-

motion the character will lose static-stability as it switches between support legs.

In effect, bipeds throw themselves into a controlled fall which is then recovered by

the swing leg as it transitions to the support leg as in Fig. 3.1b. This is known as

dynamic stability: the ability to recover when the CM exits the support polygon.

Unlike static stability, dynamic stability has no widely agreed upon rigor-

ous definition[1]. The lack of a widely disagreed upon definition makes producing

controllers for statically-unstable motions particularly challenging. Despite this,
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a) b)

Figure 3.1: Statically-stable(a) and dynamically-stable(b) motion.

Figure 3.2: Static-instability resulting from a discontinuous change in the support
polygon.

robust controllers have been developed for certain classes of dynamically-stable mo-

tion, particularly locomotion.

This work is primarily concerned with the problem of static-stability for

biped motions which have no support transition phases. While it is conceivable that

these strategies may be employed to build a controller which generates dynamically-

stable motions, it is outside the scope of this research.

3.2 The Center of Pressure (COP)

The location of the CM within the support polygon provides some indica-

tion of the stability of the character. One control strategy might be to direct the

CM away from the boundaries of the support polygon. This strategy tends to be
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COP

b)a)

Figure 3.3: (a) The applied ground force and torque at the CM of the support. (b)
The resulting location of the COP.

problematic since the location of the CM within the support polygon provides no

indication of support rotation; In fact, it is possible for a CM well within the support

polygon to move outside the support polygon instantaneously as in Fig. 3.2. This

rotation leads to a dynamic-balance problem which is more difficult to recover from.

The center of pressure (COP) is a metric which may be used to help assess

the rotational characteristics of the character. The COP can be viewed as a point

between the contact surface and support where the resultant ground reaction force

acts. More precisely, the COP is the location where the aggregate ground force must

be applied to a net zero moment. If the COP is within the support polygon, where

“in” excludes the support polygon boundaries, then the foot is not rotating.

If we assume that gravity acts along the -Z axis we can compute the COP

very easily given the aggregate force and torque applied at the CM of the support

by the ground: f and τ . τ and f are related by

τx = ‖ryz‖‖fyz‖ sin(φ1) = ryfz − rzfy (3.1)

τy = ‖rxz‖‖fxz‖ sin(φ2) = −rxfz + rzfx, (3.2)

where r is the vector from the CM to the COP, and rxz and ryz are the orthogonal

projections of r onto the XZ and Y Z planes. The location of the COP may be

determined by first calculating r.

Eqn. 3.1 is a pair of two equations with three unknowns, so an additional

constraint on the location of the COP is needed. For these calculations it is assumed
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that the ground and gravity are perpendicular, although it is possible to generalize

them to situations where this is not the case. By observing that the COP must lie

along the contact surface formed between the support, an additional constraint may

be introduced: rz = −h, where h is the height of the support CM from the ground

contact surface. Plugging rz = −h into Eqn. 3.1 and rearranging:

rx = −τy + hfx
fz

(3.3)

ry =
τx − hfy

fz
(3.4)

rz = −h. (3.5)

Let csp be the location of the CM of the support and p be the location of

the COP. The COP may be computed from r and csp:

p = csp + r. (3.6)

The COP provides a summary of the rotational characteristics of the char-

acter. Only when the COP lies on the edge of the support polygon is the foot

rotating. In the absence of external forces, the total linear and angular momentum

of the character about the CM, denoted L and H, is conserved. Furthermore, if

no external perturbations are applied, any change in system momentum must come

from the GRF and gravity.

Assuming a GRF force f is applied at the COP, the linear and angular

momentum derivatives are:

L̇ = −Mg + f (3.7)

Ḣ = s× f (3.8)

where g is the gravitational constant, M is the total mass, and c is the CM of

the character, and s = p − c. Fig. 3.4 summarizes the external forces on the

character. As Eqn. 3.8 has shown, in the absence of external perturbations the
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Figure 3.4: Typical external forces applied to the character.

coupling between the COP and the GRF direction determine the change in angular

momentum.

In the absence of angular momentum change, the line of action of f must

pass through the CM and COP of the character. It is in the preservation of angular

momentum that the character can be considered to be rotationally stable. Fur-

thermore, if the linear momentum is conserved and the CM is within the support

polygon, then by Equation 3.7, the COP is directly equal to the projection of the

CM onto the ground along the direction of gravity.

For the constraint-based ground contact model (zero-interpenetration), the

requirement that the COP is not at the edge of the support polygon necessitates that

the foot may not rotate. This is due to the zero-work requirement of the ground: the

ground can resist interpenetration but may not push the support from the contact

surface. Stated more concretely, the contact points of the support can either have a

non-zero force, or a non-zero relative acceleration with the ground, but not both[5].

This implies that for a rigid-support with a COP not at at the edge of the convex

support polygon that there are at least three contact points applying a force across

a contact manifold with a non-zero area, which by the previously states zero-work

requirement, requires these contact points to have a zero relative acceleration with

14



COPCMP

Figure 3.5: CMP relation to the CMP and the GRF

the ground. Having at least three non-collinear contact points with zero-relative

acceleration sufficiently constrains the rigid body of the support to maintain a zero-

relative linear and angular acceleration with respect to the ground. Therefore, it is

not possible to have foot rotation unless the COP is on the boundary of the support

polygon.

The COP and GRF provide a good indicator of stability for statically-

balanced motion types. By attempting to control momentum change which con-

tribute to the COP and GRF values, one could devise a control scheme which

maintains stability in the presence of disturbance.

3.3 Centroidal Moment Pivot (CMP)

In the previous section the COP was introduced as the point where the

resultant ground force must act to produce a zero net moment. It was shown that

the location of the COP and the direction and magnitude of the ground force at

this point can be used to calculate the total change of angular momentum of the

character. The centroidal moment pivot point is the point which summarizes the

coupling between the COP and the GRF.
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The CMP is the point where the COP would need to be to for there to be

no momentum change due to the ground forces. In other words, (p− c)× f = 0 and

pz = h, where h is the height of the ground. Figure 3.5 provides an illustration of

the CMP.

The CMP may be computed easily. Let g denote the location of the CMP.

Given the location of the CM, and the GRF, the CMP location is

gx = cx −
fx
fz

(cz − h) (3.9)

gy = cy −
fy
fz

(cz − h) (3.10)

The distance between the CMP and COP provide a useful metric for

assessing the rotational stability of the character. In the next section the CMP will

be used to devise a momentum control scheme.

3.4 Angular Momentum Control

In the previous section it was shown that momentum conservation is a good

approach to preserve stability as it guarantees that the support will not rotate as

long as the CM projection remains within the support polygon. It turns out that for

a wide variety of human motions, such as standing, walking and running, angular

momentum about the CM is mostly conserved[22]. Robotics researchers have used

this idea to create a walking gait by preserving angular momentum along specified

axes[18]. However, it turns out that for a wide variety of other motions, such as a

standing toe-touch or leg-swing motion, angular momentum is not conserved. Figure

3.6 presents the angular momentum magnitude of a leg-swing motion in the sagittal

plane that is clearly non-zero. This suggests that humans may be tightly regulating

angular momentum change to carry out rotationally unstable tasks.

This thesis presents a control law that allows the character to have a non-

zero angular momentum. Instead of restricting the controller to always attempt

to conserve angular momentum, the controller only attempts to preserve angular

momentum when instability indicators are present. The instability indicator used
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Figure 3.6: The angular momentum computed about the CM of a motion-captured
leg-swing motion. Despite having a widly-varying momentum value, the actor is
able to remain balanced.

in this work is the distance between the COP and the CMP. As mentioned in

the previous section, angular momentum change can only come from the GRF and

external perturbations. The distance between the CMP and the COP directly relates

to the angular momentum change produced by the ground and it used to determine

when momentum conservation is appropriate.

In Section 3.2 it was discussed that linear and angular momentum preser-

vation ensures that the COP remains within the support polygon. Of course, it

is not possible to preserve momentum indefinitely: preserving linear momentum

will cause the character CM to leave the support polygon, and preserving angular

momentum will eventually result in the character reaching a joint limit. Despite

these limitations, it is possible for the character to control its angular momentum to

aid in damping out linear momentum. As the character is forced to remove linear

momentum from the system, either due to external perturbations or tracking insta-

bility, it produces frictional torque with the ground (a character can only remove

momentum via friction). By preserving this angular momentum with the upper

17



body the character can counter-act the effects of rotation on the support. After the

CM stabilizes, the character can then proceed to recover its desired posture.

The control rule can now be stated. The character should attempt to

dampen out linear momentum based upon the position and velocity of the CM

relative to some desired CM. Damping the linear momentum will lead to angular

momentum change. Based upon the distance between the CMP and the COP the

character should attempt to remove any angular momentum change induced by the

linear momentum damping.

Other research work has suggested that during large external perturbations

humans absorb the impact by preserving the momentum for a specified period of

time [1]. After the impact has been absorbed the character recovers its posture. This

idea is supported by the proposed control law as any impact would result in a large

instantaneous velocity change of the CM according to Eqn. 3.7. Were the character

to attempt to resist the impact, the COP could possibly be pushed forward to the

edge of the support and rotation would occur.

The optimization and the objectives are presented in Chapter 5.
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Chapter 4

System Overview

This chapter introduces the system architecture used in this work. The

goal is to provide the reader with a high-level understanding of how the various

components of the system interact. More low-level implementation discussion will

be deferred to later chapters.

Fig. 4.1 presents an diagram of the system components. The core of system

is a least-squares optimization. This optimization is responsible for choosing θ̈ which

meets user specified goals. These objectives may compete, therefore the optimizer

is responsible for choosing the optimal set of accelerations which mutually satisfy

each objective.

θ̈ is passed as input along with the penalty-based ground reaction forces,

fg, to produce the actuator torques which achieve the generalized accelerations

in the presence of ground reaction forces. Lastly, the torques output from the

inverse dynamics are fed into a forward dynamics algorithm along with all other

external forces (not including gravitational or ground forces), fe, to produce the

final accelerations to be integrated. Errors are corrected in subsequent optimization

runs by the feedback components of the tracking and balance objectives.

The optimizer runs at a frequency of 30-200 Hz to achieve greater com-

putational efficiency and run in real-time. To maintain simulation stability the

inverse-dynamics/forward-dynamics loop is run at much higher rate of 1-1 kHz.

This decoupling of the desired acceleration signal from the actuation force signal is
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Figure 4.1: Diagram of the system architecture

analogous to separating the high-level planning frequency from the low-level con-

trol frequency. This is in contrast to other systems which compute new torques

at the frequency of optimization that are held constant until the next optimization

run[2, 9].

4.1 Optimizer

As stated in the previous section, the optimizer is responsible for choosing

an appropriate set of accelerations necessary to carry out multiple, potentially con-

flicting, objectives. The optimizer solves a quadratic objective function subject to

linear constraints:

min
θ̈

‖W (b−Aθ̈)‖2

subject to: Cθ̈ = d

(4.1)

where W represents a diagonal weighting matrix, b is the desired value of the objec-

tives, and A maps θ̈ to the objective space. In this system, the number of constraints

is low so this optimization can be solved efficiently.

The following subsections will provide a brief overview of the core objectives
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for simplicity. In later chapters, we will present other additional objectives such as

point objectives.

4.1.1 Tracking Objective

The tracking objective attempts to follow a proscribed motion trajectory as

closely as possible (In this work, motion data is generated through motion capture

and keyframing). Due to the discrepancies between the physical and simulated

actor and environment, postural stability is not automatically guaranteed in the

simulation environment. In dynamic environments characterized by unpredictable

disturbances tracking is insufficient for maintaining balance. The tracking objective

is primarily used to help maintain the stylistic aspects of the desired motion.

4.1.2 Balance Objective

To alleviate the limitations of tracking, additional balance objectives are

introduced. As discussed in Chapter 3, controlling the linear and angular momentum

is vital to ensuring stability. Both the linear momentum and angular momentum

goals are separated into two objectives. The linear momentum objective chooses

momentum values which slowly guide the current CM back to the desired CM,

while the angular momentum objective preserves momentum when the CMP is

distant from the CM.

One might wonder how the balance objectives cooperate with the tracking

objective. Since the linear and angular momentum require only 6 scalars to describe,

whereas a typical simulated humanoid character has around 45 degrees of freedom,

both objectives are able to work cooperatively with the tracker without disturbing

the overall posture of the motion. As one would expect, motion which is stable is

less effected by both objectives.

4.2 Inverse Dynamics

Once the optimization solves for the accelerations, a floating-base inverse

dynamics algorithm described in [11] is used to convert the accelerations into ac-
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tuator torques. Unlike Recursive Newton-Euler inverse dynamics algorithm, this

algorithm assumes root is unactuated and generates consistent torques. The inverse

dynamics algorithm solves the following equation:

Q = H(θ)θ̈ + C(θ, θ̇) +G(θ) + JT f (4.2)

for Q, which is the same as Eqn. 2.3 with the addition of an extra term representing

the generalized forces due to the ground, JT f . Here f represents a vector of Carte-

sian ground forces and JT is the transpose of the Jacobian which maps the Cartesian

ground force to a set of generalized forces. For more detail on the computation of

the Jacobian see Chapter A.

Inverse-dynamics is technically not needed to create the optimized motion,

since the accelerations can be integrated directly. This step is performed so that

effects of external impulses may also be added with the torques needed to fully

compensate for the ground.

In this work a penalty-based ground contact model is used. Since the

forces of a penalty method are based upon the current state of the character and

not coupled with the generalized accelerations, these penalty forces can be computed

and passed into the inverse dynamics algorithm and solved. This is in contrast to

constraint-based contact models which enforce strict non-penetration constraints

and solve for the ground forces and joint accelerations simultaneously as a linear

complementary optimization[5]. The benefits of such LCP approaches is that they

are more numerically stable, which allows for a larger integration step size, and also

prevents interpenetration (with some numerical error); however, they are also more

difficult to implement.

By performing inverse dynamics it is possible to determine the generalized

forces required to achieve the optimization specified accelerations in the presence of

ground contact forces. Under normal support circumstances (i.e. not landing from

a jump or standing on a moving platform) humans and other animals display a

remarkable ability to track well[19]. Therefore, it seems reasonable that the ground

may be fully-compensated for under these circumstances. Some compliance is lost

in fully-compensating for the ground and is not addressed in this work.
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4.3 Forward Dynamics

As mentioned in the previous section, the inverse-dynamics/forward-dynamics

loop is performed primarily to allow for the incorporation of external perturbations

into the system.

The optimization algorithm has no knowledge of the external forces. In-

stead it relies upon tracking error feedback to correct for the disturbance using a

PD-controller. By incorporating the forward-dynamics loop it is possible to accu-

rately model the impact dynamics.

The forward dynamics algorithm used is Featherstone. Featherstone is an

efficient O(n), reduced-coordinate algorithm which solves the equations of motion

through recursion. In contrast to the competing O(n3) Composite Rigid Body

Method, Featherstone can be shown to be faster when n > 9 [11].

23



Chapter 5

Optimization

Each simulated actor is composed of n links connected together by n − 1

3-DOF actuated ball joints, and a 6-DOF unactuated floating joint connecting the

root to the inertial reference frame. The total degrees of freedom for this system is

m = 3n+ 3. The optimization attempts to find the generalized accelerations across

all degrees of freedom, θ ∈ Rm, necessary to achieve both the tracking and balance

objective.

Solving across all DOFs is not a trivial task in the presence of under-

actuated joints. In a fully-powered system, where the motion space of the ARB is

identical to the actuation space, every generalized acceleration vector has a corre-

sponding set of realizable actuation forces. The term realizable is used to indicate

that the forces required to generate the motion can be provided by the actuators;

In other words, no magic external forces are required to produce the desired accel-

erations.

Since the humanoid character is connected to the world via a 6-DOF un-

actuated floating joint, the problem of control is more difficult. Were that character

floating in space, the conservation of linear and angular momentum would produce

a character without any control over the acceleration of its center of mass, and lim-

ited control over the angular velocity of its system (the character can speed up and

slow down by either contracting or expanding its extremities, but the momentum

is conserved). Any additional control over the character requires physical contact
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with the environment. The amount of control regained depends both on the type

of character and the type of contact. Since a character may push but not pull on

the ground, the character does not regain full control over all degrees of freedom;

Were the character able to pull on the ground the it would be possibly to model the

characters using all sphere joints, replacing the unactuated floating joint with an

actuated ball joint at the foot in contact, regaining full control over all degrees of

freedom. The problem is further exacerbated by the presence of static and dynamic

friction. To ensure that the accelerations chosen by the optimization are realizable,

the optimization must be properly constrained.

Certain approaches have tackled this problem by incorporating the dy-

namics and the contact friction cone of the character as an optimization constraint

within a quadratic programming (QP) problem formulation[2, 8]. This provides a

guarantee that the optimization will find realizable accelerations, if they exist, which

achieve the objective requirements and do not result in slip. However, due to the

large number of inequality and equality constraints the cost of solving the QP is

high. To run in realtime the optimization is executed at around 30 Hz and requires

the inclusion of an additional low-gain PD-controller to correct for latency errors

between optimization runs. The effect of this additional latency on the stability of

the character is not well documented.

This work attempts to devise a similar solution that is less computation-

ally costly which does not guarantee slip-free accelerations. Instead of attempting

to optimize over the accelerations, torques, and ground forces simultaneously, we

perform an optimization over the accelerations only and rely upon the robustness

of our balance objective to avoid slip conditions. The extra unactuated degrees of

freedom are resolved by assuming that when the character is statically stable (the

feet are on the ground and the center of mass is within the support polygon) it has

full control over the acceleration of the root through its contact with the ground.

The optimization imposes an acceleration constraint on the supports to ensure that

they maintain the acceleration of the ground.

The fixed support constraint does not guarantee that the support will not

slip or detach when the inverse/forward dynamics phase occurs. The responsibility
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of ensuring that the supports remain level with the ground is that of the balance

objectives.

Let x and q denote the position and orientation of the body (q is a quater-

nion), v and ω represent the linear and angular velocity of a rigid body, and let a

and α denote the linear and angular acceleration. For notational convenience we

will combine the linear and angular values into a single vector. Let x̂ =

 x

q

,

v̂ =

 v

ω

 and â =

 a

α

.

The optimization is

min
θ̈

βtCt(θ, θ̇, θ̈) + βblCbl(θ, θ̇, θ̈) + βbaCba(θ, θ̇, θ̈)

subject to: Jsupθ̈ + J̇supθ̇ = âsup

(5.1)

where Ct, Cbl, Cba represent the tracking, linear and angular balance objective func-

tions of the form ‖W (b−Aθ̈)‖2; β represents the objective weights; and âsup is the

linear and angular accelerations of the supports. Through the objective weights the

animator may trade-off between style preservation and balance robustness depend-

ing on requirements.

The constraint expression ensures that the supports of the character main-

tain the linear and angular acceleration of the ground at the point of contact. Let

J(θ) =
[
∂θ
∂x̂

]
be the 6n×m Jacobian which we use to map generalized velocities to

Cartesian body velocities:

v̂ = J(θ)θ̇ . (5.2)

Computing the derivative of Eqn. 5.2 over the rows corresponding to our

support bodies we obtain the constraint expression in Eqn. 5.1. If p is the number

of supports then Jsup, J̇sup are 6p ×m matrices, and âsup is a size 6p vector. For

details on the computation of the Jacobian and its derivative see Appendix A. The

following sections will present the computation of the objective terms, Ct, Cbl, and

Cba.
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5.1 Tracking

The tracking objective attempts to follow a prescribed motion trajectory

as closely as possible. It may be the case that the character may deviate from

the prescribed motion: Either from external applied forces, or due to competition

between the balance objectives. Extracting the acceleration from the motion tra-

jectory and setting it as the desired acceleration is insufficient since the tracker will

cease following the motion in the presence of disturbances. A PD-controller is used

to provide the feedback necessary to correct for disturbances:

θ̈des = ks(θmot − θ) + kd(θ̇mot − θ̇) + θ̈mot (5.3)

where θmot and θ̇mot are the motion coordinates and coordinate velocities, and θ̈mot

is a feed-forward acceleration term extracted from the motion data. Introducing

this feed-forward term allows the characters feedback tracking gains to be decreased

which allows for less stiff reactions in the presence of external disturbances. The

feed-forward acceleration may be calculated by finite differences, or by computing

the derivatives of fitted curves.

The objective may now be stated:

Ct = ‖Wt(θ̈des − θ̈)‖2. (5.4)

Ct is the sum of the squared errors between the accelerations output from the

PD-controller and the accelerations chosen by the optimizer. Wt is a diagonal

user-specified weighting matrix which allows for additional tracking emphasis or

deemphasis on particular joints. Thus, a user can create a motion which makes

greater utilization of the arms during balance by simply lowering the weights of the

corresponding the arm bodies.

5.2 Linear Balance

The linear balance component controls the characters linear momentum.

As we will see, controlling the derivative of the linear momentum of the character is
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equivalent to controlling the acceleration of the center of mass (CM), c̈. A control

scheme is devised which modifies the linear momentum of the character to guide the

CM to the center of the support polygon.

Let Li denote the linear momentum of the ith rigid body:

Li = mivi (5.5)

where mi denotes the mass of body i.

The momentum of the entire articulated body, L, can be computed from

the momenta of each individual body:

L =

n∑
i=1

Li. (5.6)

Since the optimizer optimizes over the generalized accelerations and L is a

function of velocity, the derivative, L̇, will be controlled instead:

L̇ =
n∑
i=1

L̇i =
n∑
i=1

miai (5.7)

As mentioned previously, the CM acceleration and the momentum deriva-

tive are directly related:

c̈ =
1

mT

n∑
i=1

mi
dxi
dt

=
1

mT

n∑
i=1

miai =
L̇

mT
(5.8)

where mT =
∑n

i=1mi.

By maintaining the projection of the CM within the support polygon the

character is considered statically balanced. As mentioned in Chapter 3 the foot

may still rotate and the CM may leave the support area instantaneously; therefore,

controlling the center of mass location is insufficient for balance alone.

Equation 5.8 shows that controlling the derivative of the linear momentum

is the same as controlling the mass-scaled CM acceleration. The reason momentum

is controlled instead of the CM acceleration is to maintain structural consistency

with the angular momentum controller.

The controller can now be stated as follows:
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L̇des = ksmT (cdes − c)− kd(Ldes − L) (5.9)

where ks and kd represent spring and damping gains used to control the acceleration

of recovery, and Ldes and cdes is the desired momentum and CM position.

cdes is chosen to be a user-specified point within the support relative to the

center of the support feet, s. Similarly, pdes is chosen to be the mass-scaled velocity

of s, pdes = mT ṡ.

Since control of the characters momentum along the gravitational axis

is not important to remain within the support polygon, it is ignored. Equation

5.9 is only taken along the two orthogonal axes perpendicular to the gravitational

axis while lie within the support polygon plane (in the examples presented, the

gravitation axis is Z and the perpendicular orthogonal axes are the X and Y, all

expressed in world-frame coordinates). By removing control over the gravitation axis

the tracking and angular balance objectives gain full control over the axis without

unnecessary interference.

Cbl can now be specified in matrix form:

Cbl = ‖L̇des − L̇‖2 = ‖L̇des − (Rθ̈ + rbias)‖2 (5.10)

where R is an 2×m matrix, and rbias and L̇ are both size 2 vectors. The calculation

of R and rbias from equation 5.7 can be found in Appendix A. The loss is the sum

of the squared errors between the desired momentum provided by the PD-controller

and the momentum selected by the optimizer.

5.3 Angular Balance

Our angular balance objective regulates the change in angular momentum

of the character about the CM. Let Hi represent the angular momentum of body i

computed with respect to the CM, c. Hi may be computed from the inertia matrix

of body i, Ii:

Hi = Iiωi + ri ×mivi (5.11)
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where ri = xi − c, and vi, ωi are the linear and angular velocities of body i[17].

The angular momentum of the articulated body, H, is given by

H =

n∑
i=1

Hi. (5.12)

Ḣ may be computed in the following manner:

Ḣ =
n∑
i=1

Ḣi =
n∑
i=1

Iiαi + ωi × Iiωi + ṙi ×mivi + ri ×miai (5.13)

where

ṙi = ẋi − ċ = ẋi −
1

mT

n∑
i=1

mivi. (5.14)

Building off of the control rule specified in Chapter 3, the goal is to preserve

momentum when the CMP is far from the CM. The desired momentum derivative

is therefore

Ḣdes = 0. (5.15)

The optimization objective function can now be specified:

Cba = ‖Ḣdes − Ḣ‖2 = ‖Ḣdes − (Sθ̈ + sbias)‖2 (5.16)

where S is a 3×m matrix, and sbias and Ḣ are both 3× 1 vectors. The calculation

of S and sbias from equation 5.7 can be found in Appendix B.

Since the system should only attempt to preserve angular momentum when

the CMP is far from the COP, the user specified objective gain is scaled according

to the distance between the CMP and the CM. Let g and p denote the location of

the CMP and COP. The objective weight can be computed:

βba = γ‖r‖ (5.17)

where r = p− g, and γ is the user-specified pre-scaled objective gain.

As with Eqn. 5.7, the loss is the sum of the squared errors between the

desired momentum of the PD-controller and the momentum chosen by the optimizer.
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Chapter 6

Extensions

This chapter introduces certain useful extensions to the core optimization

objectives presented in Chapter 5.

6.1 Soft Point-Acceleration Constraints

It may be desirable for an animator to control specific points on a body

without directly specifying the forward kinematics of the entire character. This

problem is analogous to inverse kinematics(IK) where the goal is typically to direct

an end-effector to a specified position without deviating too much from a desired

posture. For instance, an animator may wish to have his character reach for an

object; This would generally be very intensive to perform using a forward kinematic

approach where the joint coordinates would have to be explicitly specified.

Point-acceleration constraints operate by constraining a point on the body

to maintain a specific Cartesian acceleration. Similar to IK, a user can iteratively

drive a fixed point of interest to a desired position by specifying a desired acceleration

of the point and integrating the corresponding generalized accelerations. Like IK,

the user does not need to explicitly specify the generalized accelerations across the

entire character.

In this work the acceleration of the point of interest is controlled using a

simple PD-controller of the form:
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p̈des = ks(pdes − pcur)− kd(ṗcur − ṗdes), (6.1)

where p, ṗ, and p̈ represent the Cartesian position, velocity and acceleration of the

fixed point of interest; ks and kd are the constant spring and damper gains; and the

subscripts cur and des refer to current and desired values.

Within this proposed optimization framework, soft point acceleration con-

straints are used. Soft constraints allow for the optimization to handle multiple,

possibly conflicting constraints as well as allow for trading optimization priority

with other objectives. With hard constraints the character would be unable to

sacrifice acceleration accuracy for additional balance stability provided by the lin-

ear and angular balance objectives. As such, point-constraints are modelled as an

objective rather than a constraint in the optimization.

The objective for a single point constraint can be stated:

Cp = ‖p̈des − p̈‖2 (6.2)

= ‖p̈des − (Qθ̈ + qbias)‖2 (6.3)

where Q is a 3 ×m matrix and qbias is a size 3 vector relating θ̈ to p̈. For details

on the computation see Appendix C. Multiple point constraints can by handled by

introducing additional objectives.

6.2 Soft Joint Limits

This section will show how it is possible to augment the tracking objective

presented in Chapter 5.1 to handle joint limits. The section will increase the tracking

gains, ks and kd of Eqn. 5.3 to produce a larger restoring acceleration as the joint

limits are reached. As a desired consequence, other link segments within their limits

will compensate so that the desired balancing objectives are still met.

Due to joints being represented as 3-DOF ball joints implemented with

quaternions, it is not immediately apparent how one would specify the limits. For a

simple 1-DOF hinge or slider joint the generalized coordinate values can be limited
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Figure 6.1: The decomposition of a quaternion q into an axis-twist representation:
q = qaqt. q0 represents the zero-configuration orientation which is the identity
quaternion.

using a simple box constraint. Simple box constraint would not work for a quater-

nion joint since it is not apparent how those limits on the quaternion components

would affect the limit space. To places limits on a quaternion-based 3-DOF ball

joint a more intuitive decomposition is needed.

A common approach to implementing limits with a quaternion-based 3-

DOF ball joint is to convert the quaternion rotation into an Euler angle representa-

tion. Unfortunately, a good limit space is still somewhat unintuitive to specify with

Euler angles.

This work implements limits using a axis/twist decomposition, where the

quaternion representing the joint transformation, q, is decomposed into an axis

rotation followed by a twist. Both the axis, and the twist can then be constrained

independently. This approach leads to a limit space which closely resembles that of

an actual human.

The decomposition can be stated as follows:

q = qaqt (6.4)

where qa represents the rotation from the inboard axis to the outboard, and qt

represents the twist rotation about the resulting transformed outboard axis. Figure

6.1 illustrates the steps of the decomposition.
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Inboard Outboard

Figure 6.2: A 2D representation of the polygon cone affixed to the inboard link. Here
the black, red and the blue links correspond to the transformed axis, the orthogonal
projection of the transformed axis onto the limit cone, and the untransformed axis
(0-configuration).

To compute qa the direction of the untransformed bone-axis, a, and the

transformed axis, a′ = qaq−1 are needed. One can then easily compute the axis-

angle transform, 〈va, φa〉, needed to rotate a to a′ by first computing axis, va = a×a′,
and the angle, φa = cos−1(a · a′), and then convert back into a quaternion. Once qa

is computed qt may be easily derived: qt = q−1a q. It is then possible to intuitively

specify a boundary limit for both the axis, a′, and the angle, φt, which can be

extracted from qt by conversion into axis-angle representation.

The boundary limit for the axis is represented as polygon cone, with the

polygon normals facing outward from the bounding region. To determine if an

axis lies inside of the bounding region a projection of the outboard bone axis onto

the normal of each face is performed. If the projected value is negative along the

direction of each face normal, ni, then the axis is within the polygon cone: a′ ·ni < π

for all i. Figure 6.2 illustrates the concept.

The bounding limit for the angle is much simpler to specify. As with simple

1-DOF joints, a box constraint suffices. The constraint requires that the outboard

link twist must be within a certain range, [αl, αu], where αl and αu represent the

lower and upper angle twist limits: αl < αu.

34



The tracking values ks and kd are increased when either the angle or axis

limits are violated. The proportion of increase is directly related to the limit

violation error. For the axis, this limit violation error, eaxis, is the angle be-

tween the current axis and its orthogonal projection onto the limit cone boundary:

eaxis = cos−1(a′ · a′pr), where a′pr represents the normalized orthogonal projection

of a′ onto the polygon cone boundary. For the angle, the limit violation error, etwist,

is the difference between the twist angle, φ, and the bounding values, αl and αu:

etwist = min(|αl − φ|, |αu − φ|). The new values of ks and kd, k
′
s and k′d are:

ks
′ = ks + ls(eaxis + etwist) (6.5)

kd
′ = kd + ld(eaxis + etwist), (6.6)

where ls and ld represent stiffness gains.

The consequence of Eqn. 6.5 is that the character increases its tracking

stiffness and damping as the joint limits are exceeded. This extra stiffness results

in increased actuation torques output from the inverse dynamics stage which allow

for a greater resistance towards limit violations. As an added benefit, this extra

resistance increases the loss error of the optimization forcing the optimizer to utilize

other unviolated joints to achieve the objective.

Unfortunately, the tracking objective makes no distinction between twist

and axis stiffness, therefore any error generated, whether it be from axis or twist

limit violations, will result in a stiffening of both the axis and twist. Also, it is

necessary to ensure that the tracked motion always stays within the limit boundaries,

otherwise the character may unnecessarily stiffen and become unreactive to outside

disturbances.
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Chapter 7

Results

All simulations were run in real-time at 60 Hz on a 4200+ AMD Athlon

machine. Forward-Euler integration with a step size size of 1e−3 was used to update

the dynamics. The optimization was run at a much lower frequency of 200 Hz,

although it is possible to run the optimization at a much lower frequency of 30-60

Hz and achieve similar quality results.

Tests were performed across various humanoid and non-humanoid actors

for both single-support and double-support motions. Motion was acquired either

from keyframing in Blender, or from motion-capture software. All motion was fil-

tered using IK to ensure flat and level support conditions throughout the clip.

A morphologically-realistic model was constructed to match the approx-

imate masses of the 65-kg motion-captured actor. From the measured total mass

of the actor, the total mass of each individual body part were approximated using

statistics from Nasa on the relative mass distributions between the various body

parts1. The inertia matrix of each part were then computed to have the desired

total mass, assuming an axis-aligned box shape with the uniform density of water.

Motion was captured using a 12-camera Vicon motion capture system. Fig. 7.1

shows the skeleton and mass properties of the actor.

For the other models, the skeletons, mass properties, and keyframe motion

were roughly crafted. As the results will show, this system may handle poorly

1See http://msis.jsc.nasa.gov/Volume1.htm
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Figure 7.1: The morphologically accurate humanoid model used.

balanced motion from keyframed sources. As with the humanoid, water density and

box geometry were assumed.

7.1 Impact

Two tests were performed to measure the robustness of the control to

impacts. The first test subjected the character to a series of hand-generated timed

perturbations across the upper body. Each perturbation was 150 N applied for 100

ms. For the second test, a single large impact of 220 N was applied for 100 ms to

the head. Both tests were performed with various combinations of the objective

components enabled: tracking, tracking with linear momentum control, tracking

with linear and angular momentum control.

For the sequential impulse test, the character was able to maintain balance

with the tracking objective only, however, the supports teetered quite a bit. With

the linear momentum and tracking objectives enabled, the character fell after the

second impulse. This may possibly be due to the linear momentum component

attempting to drive the current CM to the desired CM too quickly, pushing the
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Figure 7.2: A character subjected to a 220 N impact for .1 s. Top row: Result-
ing impact with linear and angular momentum objectives disabled (note that the
supports are rotating). Bottom row: All objectives enabled.
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CMP far from the CM. Without the angular objective, the character was unable

to redirect the CMP back to the CM quickly enough to avoid foot rotation. With

all objectives enabled the character fared much better in terms of stability of the

supports and the aesthetics of the resulting motion.

The large impact test resulted in a character unable to balance without the

angular momentum objective. The addition of angular momentum objective miti-

gated the effects of the frictional torque due to linear momentum damping allowing

the CMP to return to the CM. Figure 7.2 contrasts the motion from tracking only

versus all objectives enabled.

7.2 Tracking

The tracking test attempted to assess the ability of the balance controller

to adapt motion well to preserve both stability and style. Due to physical discrep-

ancies between the simulated and real actor, assuming a motion captured source,

stability of the physically-captured actor did not necessarily translate to stability of

the virtual actor. For some single-support motions tracking was insufficient to main-

tain balance. In general, strict tracking provided stable results for double-support

motion.

For the keyframed motions, the motion was even less balanced as it was

not captured from a real actor and placed on a virtual character with approximate

mass properties. In some instances the CM trajectory of the keyframed motion

would exit the support polygon; Tracking alone would be insufficient for these mo-

tions. Humanoid and non-humanoid characters with roughly approximated mass

properties and keyframed motion were used to evaluate the systems ability to cope

with poorly balanced motion.

Tracking tests across a series of single-support and double-support mo-

tions were performed with various combinations of the objectives enabled. Double-

support motion included butterflies and standing toe-touch exercises, a fast jab

punch, and squats. The double-support motions had little difficulty tracking accu-

rately with all objectives enabled, with a minuscule perceptual difference between
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Figure 7.3: Single-support motions tracked. The white character represents the sim-
ulation while the purple represents the raw motion data. From top-left to bottom-
right: leg-swing, side-kick, forward-kick, axe-kick
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the motion data and the simulated motion. The stability could be attributed to

the relatively large size of the support polygon and relatively little movement be-

tween the COP and CMP. The single-support motion tests were a bit more difficult,

especially with some of the high energy kicking motions. Figure 7.3 presents the

single-support tracking motions used. While there were parameter combinations

which led to balanced motion for all single-support motions, even for those which

were unstable during tracking alone, the tracking accuracy of the simulation mo-

tion suffered. The system had particular difficulty with the axe kick and swing-leg

motion, most notably towards the end of both motions. This error is probably

attributed to the increase of tracking error as the motion progressed due to the

character striving to maintain balance under unrealistic tracking expectations. Im-

proved style preservation might be achieved by modifying the playback speed of the

tracked motion so that the character has more time to resolve the tracking error.

7.3 Low-Friction Tracking

This test determined the ability of the system to track accurately while

coping with low frictional forces. The friction coefficient between the character

support and the ground was chosen to be 0.03 (ice-on-ice is 0.1). The character

performed a single-support leg-circle exercise with all objectives enabled.

The character modified the tracked posture to deal with the lower friction

of the surface. As the CMP and COP moved apart the character leaned about the

axis of rotation to preserve the angular momentum and regain stability. Figure 7.4

is a snapshot of the character sacrificing tracking accuracy to preserve stability.

7.4 Point Constraints

A set of point constraints were applied to a character to test the systems

ability to balance in the presence of competing objectives. Figure 7.5 is an example

of a character subjected to three point constraints. The character is able to balance

as these constraints are created and dragged around.
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Figure 7.4: A character on a low-frictional surface (µ = 0.03) adjusting its posture to
maintain stability. The purple and white character represent the data and simulation
posture.

Figure 7.5: Left: Desired motion. Right: A character subjected to three point
constraints while simultaneously staying balanced and close to the original reference
motion.
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Figure 7.6: A character with a non-humanoid morphology tracking motion while
subjected to external perturbations.

7.5 Varying Morphologies

This tests show that it is possible that momentum control is important for

characters that do not have humanoid morphologies. Figure 7.6 shows the character

tracking a keyframed reference motion with all objectives enabled while perturbed.

Interesting arm motions result from the impact.
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Chapter 8

Conclusion

This thesis has presented an approach towards balance maintenance which

regulates a characters aggregate linear and angular momentum via a fast quadratic

optimization. It has been shown that the system is capable of tracking single and

double-support motions, even motions which are poorly balanced in the data, while

subjected to to moderate and large disturbances and other objective goals.

Certain challenges still remain. Due to the stiff penalty-based ground con-

tact model small integration steps were required. Future work may involve revis-

ing the architecture to incorporate a constraint-based ground contact model. This

would require solving a new inverse dynamics problem in which the ground force

and actuator torques would need to be solved simultaneously. In addition, resolving

the problem of compliance resulting from the inverse dynamics approach to ground

compensation. Without compliance the motions were susceptible to teetering and

unresponsive to large ground force reactions. Lastly, possibly adjusting the play-

back speed of the tracked motion so that the character can catch up to the desired

posture and better preserve overall style.
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Appendix A

Computation of the Jacobian

This section will show how the Jacobian and its derivative, J and J̇ , may

be constructed iteratively from the kinematic equations of motion for an n-link serial

articulated body indexed from 1 to n, beginning at the root and ending at the end-

effector. While the calculations will be provided for a serial articulated body for

simplicity of notation, it can be generalized to branched articulated bodies easily by

introducing an indexing function to match a body to its parent.

The calculations will assume that all joints are holonomic: joint motion

space is described as an equality constraint between the two bodies independent of

generalized velocity that may or may not be a function of time. Let S(θ, t) denote

the matrix which maps the generalized velocity of a joint to a relative Cartesian

linear and angular velocity between the bodies. S will be further separated into two

submatrices, SL and SA denoting the components which contribute to the relative

linear and angular velocity. If the joint has m degrees of the freedom, S is a 6×m
matrix. The relative Cartesian velocity between two bodies can be determined from

the generalized velocity:  vR

ωR

 = Sθ̇ =

 SL

SA

 θ̇ . (A.1)

The linear velocity of link i as a function of the linear and angular velocity

link i− 1 is
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vi = vi−1 + ωi−1 × ri + vRi , (A.2)

where ri = xi − xi−1. The term ωi−1 × ri is the velocity created by the rotation of

body i− 1.

The angular complement to Equation A.2 follows similarly:

ωi = ωi−1 + wRi (A.3)

Before we express Eqn. A.2 and A.3 in matrix form as a function of the gen-

eralized coordinates and derivatives, the cross-product operator will be introduced.

Let [.]× be the operator which maps a vector u to a matrix of the form:

[u]× =


0 −u3 u2

u3 0 −u1
−u2 u1 0

 . (A.4)

[.]× has the effect performing a cross product with the r.h.s vector (e.g. [u]×w =

u× w)

To reiterate the definition of the Jacobian,

v̂ = Jθ̇ =

 JL

JA

 θ̇ (A.5)

where JL and JA are the rows corresponding to the linear and angular velocities:

i.e. v = JLθ̇ and ω = JAθ̇.

Equation A.3 can be expressed as a function of the generalized values in

matrix form as:

ωi = JAi−1θ̇ + SAi θ̇i (A.6)

where the subscript i− 1 denotes the 3×m block-row corresponding to body i− 1.

Put into matrix form:

JAi =
[
JAi−1,1 . . . JAi−1,i−1 SAi 0 . . .

]
. (A.7)
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Here the second subscript denotes the 3×mi column-block for joint i, where mi is

the degrees of freedom for joint i.

JLi follows similarly:

JLi =
[
JLi−1,1 + [−ri]× JAi−1,1 . . . JLi−1,i−1 + [−ri]× JAi−1,i−1 SLi 0

]
. (A.8)

Since both JLi−1 and JAi−1 depends only on joint 1 through i−1, columns correspond-

ing to i through n are 0.

The derivative, J̇ , may be computed by taking the derivative of both Eqn.

A.7 and A.8:

J̇Ai =



[
J̇Ai−1,1

]T
...[

J̇Ai−1,i−1

]T[
ṠAi

]T
0
...



T

(A.9)

and

J̇Li =



[
J̇Li−1,1 + [−ṙi]× JAi−1,1 + [−ri]× J̇Ai−1,1

]T
...[

J̇Li−1,i−1 + [−ṙi]× JAi−1,i−1 + [−ri]× J̇Ai−1,i−1
]T[

ṠLi

]T
0
...



T

. (A.10)
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Appendix B

Computation of the Momentum

Derivative Matrices

B.1 Linear Momentum Derivative Matrix

The momentum derivative matrix and vector, R and rbias, presented in

Eqn. 5.10 are used to map the generalized accelerations to the linear momentum

derivative. In this section, it will be shown exactly how R and rbias are constructed.

Eqn. 5.7 will first be placed into matrix form. Let M denote an 3 × 3n

block matrix with n, 3× 3 mass matrices as it’s entries:

M =
[
M1 M2 . . . Mn

]
(B.1)

where

Mi =


mi 0 0

0 mi 0

0 0 mi

 (B.2)

corresponds to the mass matrix of rigid body i.

Multiplying M by the 3n linear acceleration vector, a, we obtain

L̇ = Ma. (B.3)
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Eqn. B.3 can be made a function of θ̈ by observing

a = Jlinθ̈ + J̇linθ̇ (B.4)

where Jlin and J̇lin are 3n×m submatrices of J and J̇ corresponding to the linear

entries.

Plugging equation B.4 into equation B.3 we obtain

L̇ = MJlinθ̈ +MJ̇linθ̇ (B.5)

= Rθ̈ + rbias (B.6)

where R = MJlin and rbias = MJ̇linθ̇.

B.2 Angular Momentum Derivative Matrix

The angular momentum derivatives matrices, S and sbias, can be computed

in a similar manner as the linear matrices.

Let

A =
[
M1 [r1]x . . . Mn [rn]x I1 . . . In

]
(B.7)

and

b =
n∑
i=1

[wi]× Iiwi +Mi [ṙi]× vi (B.8)

where [.]× is the cross-product matrix introduced in Appendix A.

Equation 5.13 can be rewritten in matrix form as:

Ḣ = Aâ+ b (B.9)

As in the previous section, equation B.9 can be made a function of θ̈ by

plugging in the expression, â = Jθ̈ + J̇ θ̇:

Ḣ = AJθ̈ +AJ̇θ̇ + b = Sθ̈ + sbias (B.10)
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where S = AJ and sbias = AJ̇θ̇ + b.

53



Appendix C

Computation of the

Point-Acceleration Constraint

Objective Matrices

This section shows how it is possible to compute Q and qbias presented in

Chapter 6.

Let x denote the position of a body B, v and ω denote the linear and

angular velocity of B, and a and α denote the linear and angular acceleration of

body B. Also, let r be the vector from body B center of mass to some point p fixed

to body B. The acceleration of p, ap, can be computed as follows from the rigid

body motion as follows:

ap =
dvp
dt

(C.1)

=
d

dt
[v + ω × r] (C.2)

= a+ α× r + ω × ṙ . (C.3)

If xp is the position of point p, then r = xp − x and ṙ = w × r.
Let JB be the block row of the Jacobian corresponding to body B. The

linear and angular velocity of B, v̂, is related to the Jacobian by
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v̂ = JB θ̇ =

 JLB

JAB

 θ̇ . (C.4)

Eqn. C.3 may be placed into matrix form as a function of the Cartesian acceleration

â:

ap =
[
I [−r]×

] a

α

+ [w]× [w]× r , (C.5)

where I is the identity matrix.

The acceleration of B may be determined from the Jacobian, J , and it’s

derivative, J̇ , as follows (For details on the computation of J and J̇ see Appendix

A):  a

α

 =
d

dt

[
JB θ̇

]
= JB θ̈ + J̇B θ̇ , (C.6)

where J̇B is the block-row of the Jacobian derivative corresponding to body B.

Let Z =
[
I [−r]×

]
. Eqn. C.5 can be expressed as a function of the

generalized coordinates and derivatives by plugging in Eqn. C.6 into Eqn. C.5:

ap = ZJθ̈ + ZJ̇θ̇ +
[
JAθ̇

]
×

[
JAθ̇

]
×
r (C.7)

= Qθ̈ + qbias , (C.8)

where Q = ZJB and qbias = ZJ̇B θ̇ +
[
JAB θ̇

]
×

[
JAB θ̇

]
×
r.
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Appendix D

Implementation of the

Optimization Solver

This work implements a quadratic solver for weighted least-squares prob-

lems with linear equality constraints. This optimizer solves problems of the form:

min
x

1

2
‖W (b−Ax)‖2

subject to: Cx = d

(D.1)

Eqn. D.1 may be solved using the method of Langrange Multipliers. The

Lagrangian function of Eqn. D.1 may be stated as:

F =
1

2
‖W (b−Ax)‖2 − λT (Cx− d) (D.2)

=
1

2
(Wb−WAx)T (Wb−WAx)− λT (Cx− d) (D.3)

=
1

2
xTATW TWAx− 2bTW TWAx+ bTW TWb− λT (Cx− d) . (D.4)

Solutions to Eqn. D.1 occur when ∂F
∂x = 0 and ∂F

∂λ = 0. Computing the

gradient of F with respect to x and λ we obtain:
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∂F

∂x
= ATW TWAx−ATW TWb− CTλ (D.5)

∂F

∂λ
= Cx− d . (D.6)

Letting M = ATW TWA and u = ATW TWb, Eqn. D.5 can be rearranged

and solved for λ first and then x:

CM−1CTλ = d− CM−1u (D.7)

Mx = u+ CTλ . (D.8)
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